
F08 – Least-squares and Eigenvalue Problems (LAPACK)

Chapter F08

Least-squares and Eigenvalue Problems (LAPACK)

Contents

1 Scope of the Chapter 3

2 Background to the Problems 3
2.1 Linear Least-squares Problems . 3
2.2 Orthogonal Factorizations and Least-squares Problems . 4

2.2.1 QR factorization . 4
2.2.2 LQ factorization . 5
2.2.3 QR factorization with column pivoting . 5

2.3 The Singular Value Decomposition . 5
2.4 The Singular Value Decomposition and Least-squares Problems 6
2.5 Symmetric Eigenvalue Problems . 6
2.6 Generalized Symmetric-Definite Eigenvalue Problems . 7
2.7 Packed Storage for Symmetric Matrices . 7
2.8 Band Matrices . 8
2.9 Nonsymmetric Eigenvalue Problems . 8
2.10 The Sylvester Equation . 9
2.11 Error and Perturbation Bounds and Condition Numbers 9

2.11.1 Least-squares problems . 10
2.11.2 The singular value decomposition . 10
2.11.3 The symmetric eigenproblem . 11
2.11.4 The generalized symmetric-definite eigenproblem 12
2.11.5 The nonsymmetric eigenproblem . 12
2.11.6 Balancing and condition . 13

2.12 Block Algorithms . 13

3 Recommendations on Choice and Use of Available Routines 14
3.1 Available Routines . 14

3.1.1 Orthogonal factorizations . 14
3.1.2 Singular value problems . 15
3.1.3 Symmetric eigenvalue problems . 15
3.1.4 Generalized symmetric-definite eigenvalue problems 17
3.1.5 Nonsymmetric eigenvalue problems . 18
3.1.6 Sylvester’s equation . 19

3.2 NAG Names and LAPACK Names . 19
3.3 Matrix Storage Schemes . 20

3.3.1 Conventional storage . 21
3.3.2 Packed storage . 21
3.3.3 Band storage . 22
3.3.4 Tridiagonal and bidiagonal matrices . 23
3.3.5 Real diagonal elements of complex matrices . 23
3.3.6 Representation of orthogonal or unitary matrices 23

3.4 Parameter Conventions . 24
3.4.1 Option parameters . 24
3.4.2 Problem dimensions . 24
3.4.3 Length of work arrays . 24
3.4.4 Error-handling and the diagnostic parameter INFO 24

4 Decision Trees 26
4.1 General purpose routines (eigenvalues and eigenvectors) 26
4.2 General purpose routines (singular value decomposition) 32

[NP3390/19/pdf] F08.1

Introduction – F08 F08 – Least-squares and Eigenvalue Problems (LAPACK)

5 Indexes of LAPACK Routines 33

6 Routines Withdrawn or Scheduled for Withdrawal 33

7 References 33

F08.2 [NP3390/19/pdf]

F08 – Least-squares and Eigenvalue Problems (LAPACK) Introduction – F08

1 Scope of the Chapter

This chapter provides routines for the solution of linear least-squares problems, eigenvalue problems and
singular value problems, as well as associated computations. It provides routines for:

– solution of linear least-squares problems

– solution of symmetric eigenvalue problems

– solution of nonsymmetric eigenvalue problems

– solution of singular value problems

– solution of generalized symmetric-definite eigenvalue problems

– matrix factorizations associated with the above problems

– estimating condition numbers of eigenvalues and eigenvectors

– estimating the numerical rank of a matrix

– solution of the Sylvester matrix equation

Routines are provided for both real and complex data.

For a general introduction to the solution of linear least-squares problems, you should turn first to the
the F04 Chapter Introduction. The decision trees, at the end of the the F04 Chapter Introduction, direct
you to the most appropriate routines in Chapter F04 or Chapter F08. Chapter F04 contains Black Box
routines which enable standard linear least-squares problems to be solved by a call to a single routine.

For a general introduction to eigenvalue and singular value problems, you should turn first to the the F02
Chapter Introduction. The decision trees, at the end of the the F02 Chapter Introduction, direct you to
the most appropriate routines in Chapter F02. Chapter F02 contains Black Box routines which enable
some standard types of problem to be solved by a call to a single routine. Often routines in Chapter F02
call Chapter F08 routines to perform the necessary computational tasks. However, divide and conquer
algorithms for symmetric (Hermitian) eigenvalue problem are available only in this chapter and they can
be considered as Black Box routines.

The routines in this chapter (F08) handle only dense, band, tridiagonal and Hessenberg matrices (not
matrices with more specialized structures, or general sparse matrices). The decision trees in Section 4
direct you to the most appropriate routines in Chapter F08.

The routines in this chapter have all been derived from the LAPACK project (see Anderson et al.
[1]). They have been designed to be efficient on a wide range of high-performance computers, without
compromising efficiency on conventional serial machines.

It is not expected that every user will need to read all of the following sections, but rather will pick out
those sections relevant to their particular problem.

2 Background to the Problems

This section is only a brief introduction to the numerical solution of linear least-squares problems,
eigenvalue and singular value problems. Consult a standard textbook for a more thorough discussion, for
example Golub and Van Loan [4].

2.1 Linear Least-squares Problems

The linear least-squares problem is
minimize

x
‖b−Ax‖2, (1)

where A is an m by n matrix, b is a given m element vector and x is the n element solution vector.

In the most usual case m ≥ n and rank(A) = n, so that A has full rank and in this case the solution
to problem (1) is unique; the problem is also referred to as finding a least-squares solution to an
overdetermined system of linear equations.

When m < n and rank(A) = m, there are an infinite number of solutions x which exactly satisfy
b − Ax = 0. In this case it is often useful to find the unique solution x which minimizes ‖x‖2, and

[NP3390/19/pdf] F08.3

Introduction – F08 F08 – Least-squares and Eigenvalue Problems (LAPACK)

the problem is referred to as finding a minimum-norm solution to an underdetermined system of linear
equations.

In the general case when we may have rank(A) < min(m,n) – in other words, A may be rank-deficient –
we seek the minimum-norm least-squares solution x which minimizes both ‖x‖2 and ‖b−Ax‖2.

This chapter (F08) contains computational routines that can be combined with routines in Chapter F07
to solve these linear least-squares problems. Chapter F04 contains Black Box routines to solve these
linear least-squares problems in standard cases. The next two sections discuss the factorizations that can
be used in the solution of linear least-squares problems.

2.2 Orthogonal Factorizations and Least-squares Problems

A number of routines are provided for factorizing a general rectangular m by n matrix A, as the product
of an orthogonal matrix (unitary if complex) and a triangular (or possibly trapezoidal) matrix.

A real matrix Q is orthogonal if QTQ = I; a complex matrix Q is unitary if QHQ = I. Orthogonal or
unitary matrices have the important property that they leave the two-norm of a vector invariant, so that

‖x‖2 = ‖Qx‖2, if Q is orthogonal or unitary.

They usually help to maintain numerical stability because they do not amplify rounding errors.

Orthogonal factorizations are used in the solution of linear least-squares problems. They may also be
used to perform preliminary steps in the solution of eigenvalue or singular value problems, and are useful
tools in the solution of a number of other problems.

2.2.1 QR factorization

The most common, and best known, of the factorizations is the QR factorization given by

A = Q

(
R
0

)
, if m ≥ n,

where R is an n by n upper triangular matrix and Q is an m by m orthogonal (or unitary) matrix. If A
is of full rank n, then R is non-singular. It is sometimes convenient to write the factorization as

A = (Q1 Q2)
(
R
0

)

which reduces to
A = Q1R,

where Q1 consists of the first n columns of Q, and Q2 the remaining m− n columns.

If m < n, R is trapezoidal, and the factorization can be written

A = Q (R1 R2) , if m < n,

where R1 is upper triangular and R2 is rectangular.

The QR factorization can be used to solve the linear least-squares problem (1) when m ≥ n and A is of
full rank, since

‖b−Ax‖2 = ‖QT b−QTAx‖2 =
∥∥∥∥c1 −Rx

c2

∥∥∥∥,
where

c ≡
(
c1
c2

)
=

(
QT

1 b

QT
2 b

)
= QT b;

and c1 is an n element vector. Then x is the solution of the upper triangular system

Rx = c1.

The residual vector r is given by

r = b−Ax = Q

(
0
c2

)
.

The residual sum of squares ‖r‖2
2 may be computed without forming r explicitly, since

‖r‖2 = ‖b−Ax‖2 = ‖c2‖2.

F08.4 [NP3390/19/pdf]

F08 – Least-squares and Eigenvalue Problems (LAPACK) Introduction – F08

2.2.2 LQ factorization

The LQ factorization is given by

A = (L 0)Q = (L 0)
(
Q1

Q2

)
= LQ1, if m ≤ n,

where L is m by m lower triangular, Q is n by n orthogonal (or unitary), Q1 consists of the first m rows
of Q, and Q2 the remaining n−m rows.

The LQ factorization of A is essentially the same as the QR factorization of AT (AH if A is complex),
since

A = (L 0)Q ⇔ AT = QT

(
LT

0

)
.

The LQ factorization may be used to find a minimum norm solution of an underdetermined system of
linear equations Ax = b where A is m by n with m < n and has rank m. The solution is given by

x = QT

(
L−1b
0

)
.

2.2.3 QR factorization with column pivoting

To solve a linear least-squares problem (1) when A is not of full rank, or the rank of A is in doubt, we
can perform either a QR factorization with column pivoting or a singular value decomposition.

The QR factorization with column pivoting is given by

A = Q

(
R
0

)
PT , m ≥ n,

where Q and R are as before and P is a (real) permutation matrix, chosen (in general) so that

|r11| ≥ |r22| ≥ . . . ≥ |rnn|

and moreover, for each k,
|rkk| ≥ ‖Rk:j,j‖2 for j = k + 1, . . . , n.

If we put

R =
(
R11 R12

0 R22

)

where R11 is the leading k by k upper triangular submatrix of R then, in exact arithmetic, if rank(A) = k,
the whole of the submatrix R22 in rows and columns k+1 to n would be zero. In numerical computation,
the aim must be to determine an index k, such that the leading submatrix R11 is well-conditioned, and
R22 is negligible, so that

R =
(
R11 R12

0 R22

)
�

(
R11 R12

0 0

)
.

Then k is the effective rank of A. See Golub and Van Loan [4] for a further discussion of numerical rank
determination.

The so-called basic solution to the linear least-squares problem (1) can be obtained from this factorization
as

x = P

(
R−1

11 ĉ1
0

)
,

where ĉ1 consists of just the first k elements of c = QT b.

2.3 The Singular Value Decomposition

The singular value decomposition (SVD) of an m by n matrix A is given by

A = UΣV T , (A = UΣV H in the complex case)

where U and V are orthogonal (unitary) and Σ is an m by n diagonal matrix with real diagonal elements,
σi, such that

σ1 ≥ σ2 ≥ . . . σmin(m,n) ≥ 0.

[NP3390/19/pdf] F08.5

Introduction – F08 F08 – Least-squares and Eigenvalue Problems (LAPACK)

The σi are the singular values of A and the first min(m,n) columns of U and V are the left and right
singular vectors of A. The singular values and singular vectors satisfy

Avi = σiui and ATui = σivi (or A
Hui = σivi)

where ui and vi are the ith columns of U and V respectively.

The computation proceeds in the following stages.

(1) The matrix A is reduced to bidiagonal form A = U1BV T
1 if A is real (A = U1BV H

1 if A is complex),
where U1 and V1 are orthogonal (unitary if A is complex), and B is real and upper bidiagonal when
m ≥ n and lower bidiagonal when m < n, so that B is nonzero only on the main diagonal and
either on the first superdiagonal (if m ≥ n) or the first subdiagonal (if m < n).

(2) The SVD of the bidiagonal matrix B is computed as B = U2ΣV
T
2 , where U2 and V2 are orthogonal

and Σ is diagonal as described above. The singular vectors of A are then U = U1U2 and V = V1V2.

If m 	 n, it may be more efficient to first perform a QR factorization of A, and then compute the SVD
of the n by n matrix R, since if A = QR and R = UΣV T , then the SVD of A is given by A = (QU)ΣV T .

Similarly, if m
 n, it may be more efficient to first perform an LQ factorization of A.

2.4 The Singular Value Decomposition and Least-squares Problems

The SVD may be used to find a minimum norm solution to a (possibly) rank-deficient linear least-squares
problem (1). The effective rank, k, of A can be determined as the number of singular values which exceed
a suitable threshold. Let Σ̂ be the leading k by k submatrix of Σ, and V̂ be the matrix consisting of the
first k columns of V . Then the solution is given by

x = V̂ Σ̂−1ĉ1,

where ĉ1 consists of the first k elements of c = UT b = UT
2 UT

1 b.

2.5 Symmetric Eigenvalue Problems

The symmetric eigenvalue problem is to find the eigenvalues, λ, and corresponding eigenvectors, z �= 0,
such that

Az = λz, A = AT , where A is real.

For the Hermitian eigenvalue problem we have

Az = λz, A = AH , where A is complex.

For both problems the eigenvalues λ are real.

When all eigenvalues and eigenvectors have been computed, we write

A = ZΛZT (or A = ZΛZH if complex),

where Λ is a diagonal matrix whose diagonal elements are the eigenvalues, and Z is an orthogonal (or
unitary) matrix whose columns are the eigenvectors. This is the classical spectral factorization of A.

The basic task of the symmetric eigenproblem routines is to compute values of λ and, optionally,
corresponding vectors z for a given matrix A. This computation proceeds in the following stages.

(1) The real symmetric or complex Hermitian matrix A is reduced to real tridiagonal form T . If A is
real symmetric this decomposition is A = QTQT with Q orthogonal and T symmetric tridiagonal.
If A is complex Hermitian, the decomposition is A = QTQH with Q unitary and T , as before, real
symmetric tridiagonal.

(2) Eigenvalues and eigenvectors of the real symmetric tridiagonal matrix T are computed. If all
eigenvalues and eigenvectors are computed, this is equivalent to factorizing T as T = SΛST , where
S is orthogonal and Λ is diagonal. The diagonal entries of Λ are the eigenvalues of T , which are
also the eigenvalues of A, and the columns of S are the eigenvectors of T ; the eigenvectors of A are
the columns of Z = QS, so that A = ZΛZT (ZΛZH when A is complex Hermitian).

F08.6 [NP3390/19/pdf]

F08 – Least-squares and Eigenvalue Problems (LAPACK) Introduction – F08

This chapter now supports three primary algorithms for computing eigenvalues and eigenvectors of real
symmetric matrices and complex Hermitian matrices. They are:

(i) the divide and conquer algorithm;
(ii) the QR algorithm;
(iii) bisection followed by inverse iteration.

The divide and conquer algorithm is generally more efficient than the traditional QR algorithm and is
recommended for computing all eigenvalues and eigenvectors. Furthermore, eigenvalues and eigenvectors
can be obtained by calling one single routine in the case of the divide and conquer algorithm. In general,
more than one routine has to be called if the QR algorithm or bisection followed by inverse iteration is
used.

2.6 Generalized Symmetric-Definite Eigenvalue Problems

This section is concerned with the solution of the generalized eigenvalue problems Az = λBz, ABz = λz,
and BAz = λz, where A and B are real symmetric or complex Hermitian and B is positive-definite.
Each of these problems can be reduced to a standard symmetric eigenvalue problem, using a Cholesky
factorization of B as either B = LLT or B = UTU (LLH or UHU in the Hermitian case).

With B = LLT , we have
Az = λBz ⇒ (L−1AL−T)(LT z) = λ(LT z).

Hence the eigenvalues of Az = λBz are those of Cy = λy, where C is the symmetric matrix C = L−1AL−T

and y = LT z. In the complex case C is Hermitian with C = L−1AL−H and y = LHz.

Table 1 summarizes how each of the three types of problem may be reduced to standard form Cy = λy,
and how the eigenvectors z of the original problem may be recovered from the eigenvectors y of the
reduced problem. The table applies to real problems; for complex problems, transposed matrices must
be replaced by conjugate-transposes.

Type of problem Factorization of B Reduction Recovery of eigenvectors

1. Az = λBz B = LLT C = L−1AL−T z = L−T y

B = UTU C = U−TAU−1 z = U−1y

2. ABz = λz B = LLT C = LTAL z = L−T y

B = UTU C = UAUT z = U−1y

3. BAz = λz B = LLT C = LTAL z = Ly

B = UTU C = UAUT z = UT y

Table 1
Reduction of generalized symmetric-definite eigenproblems to standard problems

When the generalized symmetric-definite problem has been reduced to the corresponding standard
problem Cy = λy, this may then be solved using the routines described in the previous section. No
special routines are needed to recover the eigenvectors z of the generalized problem from the eigenvectors
y of the standard problem, because these computations are simple applications of Level 2 or Level 3
BLAS (see Chapter F06).

2.7 Packed Storage for Symmetric Matrices

Routines which handle symmetric matrices are usually designed so that they use either the upper or lower
triangle of the matrix; it is not necessary to store the whole matrix. If either the upper or lower triangle
is stored conventionally in the upper or lower triangle of a two-dimensional array, the remaining elements
of the array can be used to store other useful data. However, that is not always convenient, and if it is
important to economize on storage, the upper or lower triangle can be stored in a one-dimensional array
of length n(n+ 1)/2; that is, the storage is almost halved.

This storage format is referred to as packed storage; it is described in Section 3.3.

Routines designed for packed storage are usually less efficient, especially on high-performance computers,
so there is a trade-off between storage and efficiency.

[NP3390/19/pdf] F08.7

Introduction – F08 F08 – Least-squares and Eigenvalue Problems (LAPACK)

2.8 Band Matrices

A band matrix is one whose elements are confined to a relatively small number of sub-diagonals or super-
diagonals on either side of the main diagonal. Algorithms can take advantage of bandedness to reduce
the amount of work and storage required. The storage scheme for band matrices is described in Section
3.3.

If the problem is the generalized symmetric definite eigenvalue problem Az = λBz and the matrices A
and B are additionally banded, the matrix C as defined in Section 2.6 is, in general, full. We can reduce
the problem to a banded standard problem by modifying the definition of C thus:

C = XTAX, where X = U−1Q or L−TQ,

where Q is an orthogonal matrix chosen to ensure that C has bandwidth no greater than that of A.

A further refinement is possible when A and B are banded, which halves the amount of work required
to form C. Instead of the standard Cholesky factorization of B as UTU or LLT , we use a split Cholesky
factorization B = STS, where

S =
(

U11

M21 L22

)

with U11 upper triangular and L22 lower triangular of order approximately n/2; S has the same bandwidth
as B.

2.9 Nonsymmetric Eigenvalue Problems

The nonsymmetric eigenvalue problem is to find the eigenvalues, λ, and corresponding eigenvectors, v �= 0,
such that

Av = λv.

More precisely, a vector v as just defined is called a right eigenvector of A, and a vector u �= 0 satisfying

uTA = λuT (uHA = λuH when u is complex)

is called a left eigenvector of A.

A real matrix A may have complex eigenvalues, occurring as complex conjugate pairs.

This problem can be solved via the Schur factorization of A, defined in the real case as

A = ZTZT ,

where Z is an orthogonal matrix and T is an upper quasi-triangular matrix with 1 by 1 and 2 by 2
diagonal blocks, the 2 by 2 blocks corresponding to complex conjugate pairs of eigenvalues of A. In the
complex case, the Schur factorization is

A = ZTZH,

where Z is unitary and T is a complex upper triangular matrix.

The columns of Z are called the Schur vectors. For each k (1 ≤ k ≤ n), the first k columns of Z form an
orthonormal basis for the invariant subspace corresponding to the first k eigenvalues on the diagonal of T .
Because this basis is orthonormal, it is preferable in many applications to compute Schur vectors rather
than eigenvectors. It is possible to order the Schur factorization so that any desired set of k eigenvalues
occupy the k leading positions on the diagonal of T .

The two basic tasks of the nonsymmetric eigenvalue routines are to compute, for a given matrix A, all n
values of λ and, if desired, their associated right eigenvectors v and/or left eigenvectors u, and the Schur
factorization.

These two basic tasks can be performed in the following stages.

(1) A general matrix A is reduced to upper Hessenberg form H which is zero below the first subdiagonal.
The reduction may be written A = QHQT with Q orthogonal if A is real, or A = QHQH with Q
unitary if A is complex.

(2) The upper Hessenberg matrix H is reduced to Schur form T , giving the Schur factorization
H = STST (for H real) or H = STSH (for H complex). The matrix S (the Schur vectors of
H) may optionally be computed as well. Alternatively S may be postmultiplied into the matrix
Q determined in stage 1, to give the matrix Z = QS, the Schur vectors of A. The eigenvalues are
obtained from the diagonal elements or diagonal blocks of T .

F08.8 [NP3390/19/pdf]

F08 – Least-squares and Eigenvalue Problems (LAPACK) Introduction – F08

(3) Given the eigenvalues, the eigenvectors may be computed in two different ways. Inverse iteration can
be performed on H to compute the eigenvectors of H , and then the eigenvectors can be multiplied
by the matrix Q in order to transform them to eigenvectors of A. Alternatively the eigenvectors of
T can be computed, and optionally transformed to those of H or A if the matrix S or Z is supplied.

The accuracy with which eigenvalues can be obtained can often be improved by balancing a matrix. This
is discussed further in Section 2.11.6 below.

2.10 The Sylvester Equation

The Sylvester equation is a matrix equation of the form

AX +XB = C,

where A, B, and C are given matrices with A being m by m, B an n by n matrix and C, and the solution
matrix X , m by n matrices. The solution of a special case of this equation occurs in the computation of
the condition number for an invariant subspace, but a combination of routines in this chapter allows the
solution of the general Sylvester equation.

2.11 Error and Perturbation Bounds and Condition Numbers

In this section we discuss the effects of rounding errors in the solution process and the effects of
uncertainties in the data, on the solution to the problem. A number of the routines in this chapter
return information, such as condition numbers, that allow these effects to be assessed. First we discuss
some notation used in the error bounds of later sections.

The bounds usually contain the factor p(n) (or p(m,n)), which grows as a function of the matrix dimension
n (or matrix dimensionsm and n). It measures how errors can grow as a function of the matrix dimension,
and represents a potentially different function for each problem. In practice, it usually grows just linearly;
p(n) ≤ 10n is often true, although generally only much weaker bounds can be actually proved. We
normally describe p(n) as a ‘modestly growing’ function of n. For detailed derivations of various p(n),
see [4] and [6].

For linear equation (see Chapter F07) and least-squares solvers, we consider bounds on the relative error
‖x−x̂‖/‖x‖ in the computed solution x̂, where x is the true solution. For eigenvalue problems we consider
bounds on the error |λi − λ̂i| in the ith computed eigenvalue λ̂i, where λi is the true ith eigenvalue. For
singular value problems we similarly consider bounds |σi − σ̂i|.
Bounding the error in computed eigenvectors and singular vectors v̂i is more subtle because these vectors
are not unique: even though we restrict ‖v̂i‖2 = 1 and ‖vi‖2 = 1, we may still multiply them by arbitrary
constants of absolute value 1. So to avoid ambiguity we bound the angular difference between v̂i and the
true vector vi, so that

θ(vi, v̂i) = acute angle between vi and v̂i

= arccos |vH
i v̂i|.

(2)

When θ(vi, v̂i) is small, we can choose a constant α with absolute value 1 so that ‖αvi − v̂i‖2 ≈ θ(vi, v̂i).

In addition to bounds for individual eigenvectors, bounds can be obtained for the spaces spanned
by collections of eigenvectors. These may be much more accurately determined than the individual
eigenvectors which span them. These spaces are called invariant subspaces in the case of eigenvectors,
because if v is any vector in the space, Av is also in the space, where A is the matrix. Again, we will use
angle to measure the difference between a computed space Ŝ and the true space S:

θ(S, Ŝ) = acute angle between S and Ŝ
= max

s ∈ S
s �= 0

min
ŝ ∈ Ŝ
ŝ �= 0

θ(s, ŝ) or max
ŝ ∈ Ŝ
ŝ �= 0

min
s ∈ S
s �= 0

θ(s, ŝ) (3)

θ(S, Ŝ) may be computed as follows. Let S be a matrix whose columns are orthonormal and span S.
Similarly let Ŝ be an orthonormal matrix with columns spanning Ŝ. Then

θ(S, Ŝ) = arccosσmin(S
H Ŝ).

Finally, we remark on the accuracy of the bounds when they are large. Relative errors like ‖x̂− x‖/‖x‖
and angular errors like θ(v̂i, vi) are only of interest when they are much less than 1. Some stated bounds

[NP3390/19/pdf] F08.9

Introduction – F08 F08 – Least-squares and Eigenvalue Problems (LAPACK)

are not strictly true when they are close to 1, but rigorous bounds are much more complicated and supply
little extra information in the interesting case of small errors. These bounds are indicated by using the
symbol <∼ , or ‘approximately less than’, instead of the usual ≤. Thus, when these bounds are close to
1 or greater, they indicate that the computed answer may have no significant digits at all, but do not
otherwise bound the error.

2.11.1 Least-squares problems

The conventional error analysis of linear least-squares problems goes as follows. The problem is to find
the x minimizing ‖Ax− b‖2. Let x̂ be the solution computed using one of the methods described above.
We discuss the most common case, where A is overdetermined (i.e., has more rows than columns) and
has full rank.

Then the computed solution x̂ has a small normwise backward error. In other words x̂ minimizes
‖(A+ E)x̂− (b+ f)‖2, where

max
(
‖E‖2

‖A‖2

,
‖f‖2

‖b‖2

)
≤ p(n)ε

and p(n) is a modestly growing function of n and ε is the machine precision. Let κ2(A) =
σmax(A)/σmin(A), ρ = ‖Ax− b‖2, and sin(θ) = ρ/‖b‖2. Then if p(n)ε is small enough, the error x̂− x is
bounded by

‖x− x̂‖2

‖x‖2

<∼ p(n)ε
{
2κ2(A)
cos(θ)

+ tan(θ)κ2
2(A)

}
.

If A is rank-deficient, the problem can be regularized by treating all singular values less than a user-
specified threshold as exactly zero. See [4] for error bounds in this case, as well as for the underdetermined
case.

The solution of the overdetermined, full-rank problem may also be characterized as the solution of the
linear system of equations (

I A
AT 0

)(
r
x

)
=

(
b
0

)
.

By solving this linear system (see Chapter F07) componentwise error bounds can also be obtained [2].

2.11.2 The singular value decomposition

The usual error analysis of the SVD algorithm is as follows [4].

The computed SVD, Û Σ̂V̂ T , is nearly the exact SVD of A+E, i.e., A+E = (Û+δÛ)Σ̂(V̂ +δV̂) is the true
SVD, so that Û + δÛ and V̂ + δV̂ are both orthogonal, where ‖E‖2/‖A‖2 ≤ p(m,n)ε, ‖δÛ‖ ≤ p(m,n)ε,
and ‖δV̂ ‖ ≤ p(m,n)ε. Here p(m,n) is a modestly growing function of m and n and ε is the machine
precision. Each computed singular value σ̂i differs from the true σi by an amount satisfying the bound

|σ̂i − σi| ≤ p(m,n)εσ1.

Thus large singular values (those near σ1) are computed to high relative accuracy and small ones may
not be.

The angular difference between the computed left singular vector ûi and the true ui satisfies the
approximate bound

θ(ûi, ui) <∼
p(m,n)ε‖A‖2

gapi

where
gapi = min

j �=i
|σi − σj |

is the absolute gap between σi and the nearest other singular value. Thus, if σi is close to other singular
values, its corresponding singular vector ui may be inaccurate. The same bound applies to the computed
right singular vector v̂i and the true vector vi. The gaps may be easily obtained from the computed
singular values.

Let Ŝ be the space spanned by a collection of computed left singular vectors {ûi, i ∈ I}, where I is a
subset of the integers from 1 to n. Let S be the corresponding true space. Then

θ(Ŝ, S) <∼
p(m,n)ε‖A‖2

gapI

.

F08.10 [NP3390/19/pdf]

F08 – Least-squares and Eigenvalue Problems (LAPACK) Introduction – F08

where
gapI = min{|σi − σj | for i ∈ I, j �∈ I}

is the absolute gap between the singular values in I and the nearest other singular value. Thus, a cluster
of close singular values which is far away from any other singular value may have a well determined space
Ŝ even if its individual singular vectors are ill-conditioned. The same bound applies to a set of right
singular vectors {v̂i, i ∈ I}.
In the special case of bidiagonal matrices, the singular values and singular vectors may be computed
much more accurately [3]. A bidiagonal matrix B has nonzero entries only on the main diagonal and
the diagonal immediately above it (or immediately below it). Reduction of a dense matrix to bidiagonal
form B can introduce additional errors, so the following bounds for the bidiagonal case do not apply to
the dense case.

Using the routines in this chapter, each computed singular value of a bidiagonal matrix is accurate to
nearly full relative accuracy, no matter how tiny it is, so that

|σ̂i − σi| ≤ p(m,n)εσi.

The computed left singular vector ûi has an angular error at most about

θ(ûi, ui) <∼
p(m,n)ε
relgapi

where
relgapi = min

j �=i
|σi − σj |/(σi + σj)

is the relative gap between σi and the nearest other singular value. The same bound applies to the right
singular vector v̂i and vi. Since the relative gap may be much larger than the absolute gap, this error
bound may be much smaller than the previous one. The relative gaps may be easily obtained from the
computed singular values.

2.11.3 The symmetric eigenproblem

The usual error analysis of the symmetric eigenproblem is as follows [5].

The computed eigendecomposition ẐΛ̂ẐT is nearly the exact eigendecomposition of A+E, i.e., A+E =
(Ẑ+δẐ)Λ̂(Ẑ+δẐ)T is the true eigendecomposition so that Ẑ+δẐ is orthogonal, where ‖E‖2/‖A‖2 ≤ p(n)ε
and ‖δẐ‖2 ≤ p(n)ε and p(n) is a modestly growing function of n and ε is the machine precision. Each
computed eigenvalue λ̂i differs from the true λi by an amount satisfying the bound

|λ̂i − λi| ≤ p(n)ε‖A‖2.

Thus large eigenvalues (those near max
i

|λi| = ‖A‖2) are computed to high relative accuracy and small
ones may not be.

The angular difference between the computed unit eigenvector ẑi and the true zi satisfies the approximate
bound

θ(ẑi, zi) <∼
p(n)ε‖A‖2

gapi

if p(n)ε is small enough, where
gapi = min

j �=i
|λi − λj |

is the absolute gap between λi and the nearest other eigenvalue. Thus, if λi is close to other eigenvalues,
its corresponding eigenvector zi may be inaccurate. The gaps may be easily obtained from the computed
eigenvalues.

Let Ŝ be the invariant subspace spanned by a collection of eigenvectors {ẑi, i ∈ I}, where I is a subset of
the integers from 1 to n. Let S be the corresponding true subspace. Then

θ(Ŝ, S) <∼
p(n)ε‖A‖2

gapI

where
gapI = min{|λi − λj | for i ∈ I, j �∈ I}

[NP3390/19/pdf] F08.11

Introduction – F08 F08 – Least-squares and Eigenvalue Problems (LAPACK)

is the absolute gap between the eigenvalues in I and the nearest other eigenvalue. Thus, a cluster of close
eigenvalues which is far away from any other eigenvalue may have a well determined invariant subspace
Ŝ even if its individual eigenvectors are ill-conditioned.

In the special case of a real symmetric tridiagonal matrix T , routines in this chapter can compute the
eigenvalues and eigenvectors much more accurately. See Anderson et al.[1] for further details.

2.11.4 The generalized symmetric-definite eigenproblem

The three types of problem to be considered are A − λB, AB − λI and BA − λI. In each case A and
B are real symmetric (or complex Hermitian) and B is positive-definite. We consider each case in turn,
assuming that routines in this chapter are used to transform the generalized problem to the standard
symmetric problem, followed by the solution of the the symmetric problem. In all cases

gapi = min
j �=i

|λi − λj |

is the absolute gap between λi and the nearest other eigenvalue.

(1) A− λB. The computed eigenvalues λ̂i can differ from the true eigenvalues λi by an amount

|λ̂i − λi| <∼ p(n)ε‖B−1‖2‖A‖2.

The angular difference between the computed eigenvector ẑi and the true eigenvector zi is

θ(ẑi, zi) <∼
p(n)ε‖B−1‖2‖A‖2(κ2(B))

1/2

gapi

.

(2) AB − λI or BA − λI. The computed eigenvalues λ̂i can differ from the true eigenvalues λi by an
amount

|λ̂i − λi| <∼ p(n)ε‖B‖2‖A‖2.

The angular difference between the computed eigenvector ẑi and the true eigenvector zi is

θ(ẑi, zi) <∼
q(n)ε‖B‖2‖A‖2(κ2(B))

1/2

gapi

.

These error bounds are large when B is ill-conditioned with respect to inversion (κ2(B) is large). It is
often the case that the eigenvalues and eigenvectors are much better conditioned than indicated here.
One way to get tighter bounds is effective when the diagonal entries of B differ widely in magnitude, as
for example with a graded matrix.

(1) A− λB. Let D = diag(b−1/2
11 , . . . , b−1/2

nn) be a diagonal matrix. Then replace B by DBD and A by
DAD in the above bounds.

(2) AB − λI or BA − λI. Let D = diag(b−1/2
11 , . . . , b−1/2

nn) be a diagonal matrix. Then replace B by
DBD and A by D−1AD−1 in the above bounds.

Further details can be found in Anderson et al. [1].

2.11.5 The nonsymmetric eigenproblem

The nonsymmetric eigenvalue problem is more complicated than the symmetric eigenvalue problem. In
this section, we just summarize the bounds. Further details can be found in Anderson et al. [1].

We let λ̂i be the ith computed eigenvalue and λi the ith true eigenvalue. Let v̂i be the corresponding
computed right eigenvector, and vi the true right eigenvector (so Avi = λivi). If I is a subset of the
integers from 1 to n, we let λI denote the average of the selected eigenvalues: λI = (

∑
i∈I

λi)/(
∑
i∈I

1), and

similarly for λ̂I . We also let SI denote the subspace spanned by {vi, i ∈ I}; it is called a right invariant
subspace because if v is any vector in SI then Av is also in SI . ŜI is the corresponding computed
subspace.

The algorithms for the nonsymmetric eigenproblem are normwise backward stable: they compute the
exact eigenvalues, eigenvectors and invariant subspaces of slightly perturbed matrices A + E, where

F08.12 [NP3390/19/pdf]

F08 – Least-squares and Eigenvalue Problems (LAPACK) Introduction – F08

‖E‖ ≤ p(n)ε‖A‖. Some of the bounds are stated in terms of ‖E‖2 and others in terms of ‖E‖F ; one may
use p(n)ε for either quantity.

Routines are provided so that, for each (λ̂i, v̂i) pair the two values si and sepi, or for a selected subset
I of eigenvalues the values sI and sepI can be obtained, for which the error bounds in Table 2 are true
for sufficiently small ‖E‖, (which is why they are called asymptotic):

Simple eigenvalue |λ̂i − λi| <∼ ‖E‖2/si

Eigenvalue cluster |λ̂I − λI
<∼ ‖E‖2/sI

Eigenvector θ(ϑ̂i, ϑi) <∼ ‖E‖F/sepi

Invariant subspace θ(ŜI , SI) <∼ ‖E‖F/sepI

Table 2
Asymptotic error bounds for the nonsymmetric eigenproblem

If the problem is ill-conditioned, the asymptotic bounds may only hold for extremely small ‖E‖. The
global error bounds of Table 3 are guaranteed to hold for all ‖E‖F < s× sep/4:

Simple eigenvalue |λ̂i − λi| ≤ n‖E‖2/si Holds for all E

Eigenvalue cluster |λ̂I − λI | ≤ 2‖E‖2/sI Requires ‖E‖F < sI × sepI/4

Eigenvector θ(ϑ̂i, ϑi) ≤ arctan(2‖E‖F/(sepi − 4‖E‖F/si)) Requires ‖E‖F < si × sepi/4

Invariant subspace θ(ŜI , SI) ≤ arctan(2‖E‖F/(sepI − 4‖E‖F/sI)) Requires ‖E‖F < sI × sepI/4

Table 3
Global error bounds for the nonsymmetric eigenproblem

2.11.6 Balancing and condition

There are two preprocessing steps one may perform on a matrix A in order to make its eigenproblem
easier. The first is permutation, or reordering the rows and columns to make A more nearly upper
triangular (closer to Schur form): A′ = PAPT , where P is a permutation matrix. If A′ is permutable
to upper triangular form (or close to it), then no floating-point operations (or very few) are needed to
reduce it to Schur form. The second is scaling by a diagonal matrix D to make the rows and columns of
A′ more nearly equal in norm: A′′ = DA′D−1. Scaling can make the matrix norm smaller with respect
to the eigenvalues, and so possibly reduce the inaccuracy contributed by roundoff (see Chapter, II/11 of
[7]). We refer to these two operations as balancing.

Permuting has no effect on the condition numbers or their interpretation as described previously. Scaling,
however, does change their interpretation and further details can be found in Anderson et al. [1].

2.12 Block Algorithms

A number of the routines in this chapter use what is termed a block algorithm. This means that at
each major step of the algorithm a block of rows or columns is updated, and much of the computation
is performed by matrix-matrix operations on these blocks. The matrix-matrix operations are performed
by calls to the Level 3 BLAS (see Chapter F06), which are the key to achieving high performance on
many modern computers. In the case of the QR algorithm for reducing an upper Hessenberg matrix to
Schur form, a multishift strategy is used in order to improve performance. See Golub and Van Loan [4]
or Anderson et al. [1] for more about block algorithms and the multishift strategy.

The performance of a block algorithm varies to some extent with the blocksize – that is, the number
of rows or columns per block. This is a machine-dependent parameter, which is set to a suitable value
when the library is implemented on each range of machines. Users of the library do not normally need
to be aware of what value is being used. Different block sizes may be used for different routines. Values
in the range 16 to 64 are typical.

On more conventional machines there is often no advantage from using a block algorithm, and then the
routines use an unblocked algorithm (effectively a block size of 1), relying solely on calls to the Level 2
BLAS (see Chapter F06 again).

[NP3390/19/pdf] F08.13

Introduction – F08 F08 – Least-squares and Eigenvalue Problems (LAPACK)

The only situation in which a user needs some awareness of the block size is when it affects the amount
of workspace to be supplied to a particular routine. This is discussed in Section 3.4.3.

3 Recommendations on Choice and Use of Available Routines

Note. Refer to the Users’ Note for your implementation to check that a routine is available.

3.1 Available Routines

The tables in the following subsections show the routines which are provided for performing different
computations on different types of matrices. Each entry in the table gives the NAG routine name, the
LAPACK single precision name, and the LAPACK double precision name (see Section 3.2).

For many computations it is necessary to call two or more routines in sequence some commonly required
sequences of routines are indicated below; an asterisk (∗) against a routine name means that the sequence
of calls is illustrated in the example program for that routine. (But remember that Black Box routines
for the same computations may be provided in Chapter F02 or Chapter F04.)

3.1.1 Orthogonal factorizations

Routines are provided for QR factorization (with and without column pivoting), and for LQ factorization
(without pivoting only), of a general real or complex rectangular matrix.

The factorization routines do not form the matrix Q explicitly, but represent it as a product of elementary
reflectors (see Section 3.3.6). Additional routines are provided to generate all or part of Q explicitly if
it is required, or to apply Q in its factored form to another matrix (specifically to compute one of the
matrix products QC, QTC, CQ or CQT with QT replaced by QH if C and Q are complex.

Factorize
without
pivoting

Factorize
with
pivoting

Generate
Matrix Q

Apply
matrix Q

QR factorization,
real matrices

F08AEF
SGEQRF
DGEQRF

F08BEF
SGEQPF
DGEQPF

F08AFF
SORGQR
DORGQR

F08AGF
SORMQR
DORMQR

LQ factorization,
real matrices

F08AHF
SGELQF
DGELQF

F08AJF
SORGLQ
DORGLQ

F08AKF
SORMLQ
DORMLQ

QR factorization,
complex matrices

F08ASF
CGEQRF
ZGEQRF

F08BSF
CGEQPF
ZGEQPF

F08ATF
CUNGQR
ZUNMQR

F08AUF
CUNMQR
ZUNGQR

LQ factorization,
complex matrices

F08AVF
CGELQF
ZGELQF

F08AWF
CUNGLQ
ZUNGLQ

F08AXF
CUNMQL
ZUNMLQ

To solve linear least-squares problems, as described in Section 2.2.1 or Section 2.2.3, routines based on
the QR factorization can be used:

real data, full-rank problem F08AEF*, F08AGF, F06YJF
complex data, full-rank problem F08ASF*, F08AUF, F06ZJF
real data, rank-deficient problem F08BEF*, F08AGF, F06YJF
complex data, rank-deficient problem F08BSF*, F08AUF, F06ZJF

To find the minimum norm solution of under-determined systems of linear equations, as described in
Section 2.2.2, routines based on the LQ factorization can be used:

real data, full-rank problem F08AHF*, F06YJF, F08AKF
complex data, full-rank problem F08AVF*, F06ZJF, F08AXF

F08.14 [NP3390/19/pdf]

F08 – Least-squares and Eigenvalue Problems (LAPACK) Introduction – F08

3.1.2 Singular value problems

Routines are provided to reduce a general real or complex rectangular matrix A to real bidiagonal form
B by an orthogonal transformation A = QBPT (or by a unitary transformation A = QBPH if A is
complex). Different routines allow a full matrix A to be stored conventionally (see Section 3.3.1), or a
band matrix to use band storage (see Section 3.3.3).

The routines for reducing full matrices do not form the matrix Q or P explicitly; additional routines
are provided to generate all or part of them, or to apply them to another matrix, as with the routines
for orthogonal factorizations. Explicit generation of Q or P is required before using the bidiagonal QR
algorithm to compute left or right singular vectors of A.

The routines for reducing band matrices have options to generate Q or P if required.

Further routines are provided to compute all or part of the singular value decomposition of a real
bidiagonal matrix; the same routines can be used to compute the singular value decomposition of a
real or complex matrix that has been reduced to bidiagonal form.

Reduce to
bidiagonal
form

Generate
matrix Q
or PT

Apply
matrix Q
or P

Reduce band
matrix to
bidiagonal
form

SVD of
bidiagonal
form (QR
algorithm)

real matrices F08KEF
SGEBRD
DGEBRD

F08KFF
SORGBR
DORGBR

F08KGF
SORMBR
DORMBR

F08LEF
SGBBRD
DGBBRD

F08MEF
SBDSQR
DBDSQR

complex matrices F08KSF
CGEBRD
ZGEBRD

F08KTF
CUNGBR
ZUNGBR

F08KUF
CUNMBR
ZUNMBR

F08LSF
CGBBRD
ZGBBRD

F08MSF
CBDSQR
ZBDSQR

To compute the singular values and vectors of a rectangular matrix, as described in Section 2.3, use the
following sequence of calls:

Rectangular matrix (standard storage)

real matrix, singular values and vectors F08KEF, F08KFF*, F08MEF
complex matrix, singular values and vectors F08KSF, F08KTF*, F08MSF

Rectangular matrix (banded)

real matrix, singular values and vectors F08LEF, F08MEF
complex matrix, singular values and vectors F08LSF, F08MSF

To use the singular value decomposition to solve a linear least-squares problem, as described in Section
2.4, the following routines are required:

real data: F08KEF, F08KGF, F08KFF, F08MEF, F06YAF
complex data: F08KSF, F08KUF, F08KTF, F08MSF, F06ZAF

3.1.3 Symmetric eigenvalue problems

Routines are provided to reduce a real symmetric or complex Hermitian matrix A to real tridiagonal form
T by an orthogonal similarity transformation A = QTQT (or by a unitary transformation A = QTQH if
A is complex). Different routines allow a full matrix A to be stored conventionally (see Section 3.3.1) or
in packed storage (see Section 3.3.2); or a band matrix to use band storage (see Section 3.3.3).

The routines for reducing full matrices do not form the matrix Q explicitly; additional routines are
provided to generateQ, or to apply it to another matrix, as with the routines for orthogonal factorizations.
Explicit generation of Q is required before using the QR algorithm to find all the eigenvectors of A;
application of Q to another matrix is required after eigenvectors of T have been found by inverse iteration,
in order to transform them to eigenvectors of A.

The routines for reducing band matrices have an option to generate Q if required.

[NP3390/19/pdf] F08.15

Introduction – F08 F08 – Least-squares and Eigenvalue Problems (LAPACK)

Reduce to
tridiagonal
form

Generate
matrix Q

Apply
matrix Q

real symmetric matrices F08FEF
SSYTRD
DSYTRD

F08FFF
SORGTR
DORGTR

F08FGF
SORMTR
DORMTR

real symmetric matrices
(packed storage)

F08GEF
SSPTRD
DSPTRD

F08GFF
SOPGTR
DOPGTR

F08GGF
SOPMTR
DOPMTR

real symmetric band matrices F08HEF
SSBTRD
DSBTRD

complex Hermitian matrices F08FSF
CHETRD
ZHETRD

F08FTF
CUNGTR
ZUNGTR

F08FUF
CUNMTR
ZUNMTR

complex Hermitian matrices
(packed storage)

F08GSF
CHPTRD
ZHPTRD

F08GTF
CUPGTR
ZUPGTR

F08GUF
CUPMTR
ZUPMTR

complex Hermitian band
matrices

F08HSF
CHBTRD
ZHBTRD

A variety of routines are provided to compute eigenvalues and eigenvectors of the real symmetric
tridiagonal matrix T , some computing all eigenvalues and eigenvectors, some computing selected
eigenvalues and eigenvectors. The same routines can be used to compute eigenvalues and eigenvectors of
a real symmetric or complex Hermitian matrix which has been reduced to tridiagonal form.

Eigenvalues and eigenvectors of real symmetric tridiagonal matrices:

The original (non-reduced) matrix is Real or Complex Hermitian

all eigenvalues (root-free QR algorithm) F08JFF
all eigenvalues (root-free QR algorithm called by divide and conquer) F08JCF
selected eigenvalues (bisection) F08JJF

The original (non-reduced) matrix is Real

all eigenvalues and eigenvectors (QR algorithm) F08JEF
all eigenvalues and eigenvectors (divide and conquer) F08JCF
all eigenvalues and eigenvectors (positive-definite case) F08JGF
selected eigenvectors (inverse iteration) F08JKF

The original (non-reduced) matrix is Complex Hermitian

all eigenvalues and eigenvectors (QR algorithm) F08JSF
all eigenvalues and eigenvectors (positive-definite case) F08JUF
selected eigenvectors (inverse iteration) F08JXF

The following sequences of calls may be used to compute various combinations of eigenvalues and
eigenvectors, as described in Section 2.5.

Sequences for computing eigenvalues and eigenvectors

Real Symmetric matrix (standard storage)

all eigenvalues and eigenvectors (using divide and conquer) F08FCF
all eigenvalues and eigenvectors (using QR algorithm) F08FEF, F08FFF*, F08JEF
selected eigenvalues and eigenvectors (bisection and inverse iteration) F08FEF, F08JJF, F08JKF,

F08FGF*

F08.16 [NP3390/19/pdf]

F08 – Least-squares and Eigenvalue Problems (LAPACK) Introduction – F08

Real Symmetric matrix (packed storage)

all eigenvalues and eigenvectors (using divide and conquer) F08GCF
all eigenvalues and eigenvectors (using QR algorithm) F08GEF, F08GFF*, F08JEF
selected eigenvalues and eigenvectors (bisection and inverse iteration) F08GEF, F08JJF, F08JKF,

F08GGF*

Real Symmetric banded matrix

all eigenvalues and eigenvectors (using divide and conquer) F08HCF
all eigenvalues and eigenvectors (using QR algorithm) F08HEF*, F08JEF

Complex Hermitian matrix (standard storage)

all eigenvalues and eigenvectors (using divide and conquer) F08FQF
all eigenvalues and eigenvectors (using QR algorithm) F08FSF, F08FTF*, F08JSF
selected eigenvalues and eigenvectors (bisection and inverse iteration) F08FSF, F08JJF, F08JXF,

F08FUF*

Complex Hermitian matrix (packed storage)

all eigenvalues and eigenvectors (using divide and conquer) F08GQF
all eigenvalues and eigenvectors (using QR algorithm) F08GSF, F08GTF*, F08JSF
selected eigenvalues and eigenvectors (bisection and inverse iteration) F08GSF, F08JJF, F08JXF,

F08GUF*

Complex Hermitian banded matrix

all eigenvalues and eigenvectors (using divide and conquer) F08HQF
all eigenvalues and eigenvectors (using QR algorithm) F08HSF*, F08JSF

3.1.4 Generalized symmetric-definite eigenvalue problems

Routines are provided for reducing each of the problems Ax = λBx, ABx = λx or BAx = λx to an
equivalent standard eigenvalue problem Cy = λy. Different routines allow the matrices to be stored
either conventionally or in packed storage. The positive-definite matrix B must first be factorized using a
routine from Chapter F07. There is also a routine which reduces the problem Ax = λBx where A and B
are banded, to an equivalent banded standard eigenvalue problem; this uses a split Cholesky factorization
for which a routine in Chapter F08 is provided.

Reduce to
standard problem

Reduce to
standard problem
(packed storage)

Reduce to
standard problem
(band matrices)

real symmetric matrices F08SEF
SSYGST
DSYGST

F08TEF
SSPGST
DSPGST

F08UEF
SSBGST
DSBGST

complex Hermitian matrices F08SSF
CHEGST
ZHEGST

F08TSF
CHPGST
ZHPGST

F08USF
CHBGST
ZHBGST

The equivalent standard problem can then be solved using the routines discussed in Section 3.1.3. For
example, to compute all the eigenvalues, the following routines must be called:

real symmetric-definite problem F07FDF, F08SEF*, F08FEF, F08JFF
real symmetric-definite problem, packed storage F07GDF, F08TEF*, F08GEF, F08JFF
real symmetric-definite banded problem F08UFF*, F08UEF*, F08HEF, F08JFF
complex Hermitian-definite problem F07FRF, F08SSF*, F08FSF, F08JFF
complex Hermitian-definite problem, packed storage F07GRF, F08TSF*, F08GSF, F08JFF
complex Hermitian-definite banded problem F08UTF*, F08USF*, F08HSF, F08JFF

If eigenvectors are computed, the eigenvectors of the equivalent standard problem must be transformed
back to those of the original generalized problem, as indicated in Section 2.6; routines from Chapter F06
may be used for this.

[NP3390/19/pdf] F08.17

Introduction – F08 F08 – Least-squares and Eigenvalue Problems (LAPACK)

3.1.5 Nonsymmetric eigenvalue problems

Routines are provided to reduce a general real or complex matrix A to upper Hessenberg form H by an
orthogonal similarity transformation A = QHQT (or by a unitary transformation A = QHQH if A is
complex).

These routines do not form the matrix Q explicitly; additional routines are provided to generate Q, or to
apply it to another matrix, as with the routines for orthogonal factorizations. Explicit generation of Q is
required before using the QR algorithm on H to compute the Schur vectors; application of Q to another
matrix is needed after eigenvectors of H have been computed by inverse iteration, in order to transform
them to eigenvectors of A.

Routines are also provided to balance the matrix before reducing it to Hessenberg form, as described
in Section 2.11.6. Companion routines are required to transform Schur vectors or eigenvectors of the
balanced matrix to those of the original matrix.

Reduce to
Hessenberg
form

Generate
matrix Q

Apply
matrix Q

Balance Backtransform
vectors after
balancing

real matrices F08NEF
SGEHRD
DGEHRD

F08NFF
SORGHR
DORGHR

F08NGF
SORMHR
DORMHR

F08NHF
SGEBAL
DGEBAL

F08NJF
SGEBAK
DGEBAK

complex matrices F08NSF
CGEHRD
ZGEHRD

F08NTF
CUNGHR
ZUNGHR

F08NUF
CUNMHR
ZUNMHR

F08NVF
CGEBAL
ZGEBAL

F08NWF
CGEBAK
ZGEBAK

Routines are provided to compute the eigenvalues and all or part of the Schur factorization of an upper
Hessenberg matrix. Eigenvectors may be computed either from the upper Hessenberg form by inverse
iteration, or from the Schur form by back-substitution; these approaches are equally satisfactory for
computing individual eigenvectors, but the latter may provide a more accurate basis for a subspace
spanned by several eigenvectors.

Additional routines estimate the sensitivities of computed eigenvalues and eigenvectors, as discussed in
Section 2.11.5.

Eigenvalues
and Schur
factorization
(QR algorithm)

Eigenvectors
from
Hessenberg
form (inverse
iteration)

Eigenvectors
from Schur
factorization

Sensitivities of
eigenvalues
and
eigenvectors

real matrices F08PEF
SHSEQR
DHSEQR

F08PKF
SHSEIN
DHSEIN

F08QKF
STREVC
DTREVC

F08QLF
STRSNA
DTRSNA

complex matrices F08PSF
CHSEQR
ZHSEQR

F08PXF
CHSEIN
ZHSEIN

F08QXF
CTREVC
ZTREVC

F08QYF
CTRSNA
ZTRSNA

Finally routines are provided for re-ordering the Schur factorization, so that eigenvalues appear in any
desired order on the diagonal of the Schur form. The routines F08QFF and F08QTF simply swap two
diagonal elements or blocks, and may need to be called repeatedly to achieve a desired order. The
routines F08QGF and F08QUF perform the whole re-ordering process for the important special case
where a specified cluster of eigenvalues is to appear at the top of the Schur form; if the Schur vectors
are re-ordered at the same time, they yield an orthonormal basis of the invariant subspace corresponding
to the specified cluster of eigenvalues. These routines can also compute the sensitivities of the cluster of
eigenvalues and the invariant subspace.

F08.18 [NP3390/19/pdf]

F08 – Least-squares and Eigenvalue Problems (LAPACK) Introduction – F08

Reorder Schur factorization Reorder Schur factorization,
find basis of invariant
subspace and estimate
sensitivities

real matrices F08QFF
STREXC
DTREXC

F08QGF
STRSEN
DTRSEN

complex matrices F08QTF
CTREXC
ZTREXC

F08QUF
CTRSEN
ZTRSEN

The following sequences of calls may be used to compute various combinations of eigenvalues, Schur
vectors and eigenvectors, as described in Section 2.9:

real matrix, all eigenvalues and Schur factorization F08NEF, F08NFF*, F08PEF
real matrix, all eigenvalues and selected eigenvectors F08NEF, F08PEF, F08PKF,

F08NGF*
real matrix, all eigenvalues and eigenvectors (with balancing) F08NHF*, F08NEF, F08NFF,

F08PEF, F08PKF, F08NJF
complex matrix, all eigenvalues and Schur factorization F08NSF, F08NTF*, F08PSF
complex matrix, all eigenvalues and selected eigenvectors F08NSF, F08PSF, F08PXF,

F08NUF*
complex matrix, all eigenvalues and eigenvectors (with balancing) F08NVF*, F08NSF, F08NTF,

F08PSF, F08PXF, F08NWF

3.1.6 Sylvester’s equation

Routines are provided to solve the real or complex Sylvester equation AX ±XB = C, where A and B
are upper quasi-triangular if real, or upper triangular if complex. To solve the general form of Sylvester’s
equation in which A and B are general square matrices, A and B must be reduced to upper (quasi-)
triangular form by the Schur factorization,using routines described in Section 3.1.5. For more details, see
the documents for the routines listed below.

solve Sylvester’s equation

real matrices F08QHF
STRSYL
DTRSYL

complex matrices F08QVF
CTRSYL
ZTRSYL

3.2 NAG Names and LAPACK Names

As well as the NAG routine name (beginning F08-), the tables in Section 3.1 show the LAPACK routine
names in both single and double precision.

The routines may be called either by their NAG names or by their LAPACK names. When using a single
precision implementation of the NAG Library, the single precision form of the LAPACK name must be
used (beginning with S- or C-); when using a double precision implementation of the NAG Library, the
double precision form of the LAPACK name must be used (beginning with D- or Z-).

References to F08 routines in the Manual normally include the LAPACK single and double precision
names, in that order – for example F08AEF (SGEQRF/DGEQRF). The LAPACK routine names follow
a simple scheme (which is similar to that used for the BLAS in Chapter F06). Each name has the
structure XYYZZZ, where the components have the following meanings:

– the initial letter X indicates the data type (real or complex) and precision:

S – real, single precision (in Fortran 77, REAL)
D – real, double precision (in Fortran 77, DOUBLE PRECISION)

[NP3390/19/pdf] F08.19

Introduction – F08 F08 – Least-squares and Eigenvalue Problems (LAPACK)

C – complex, single precision (in Fortran 77, COMPLEX)
Z – complex, double precision (in Fortran 77, COMPLEX*16 or DOUBLE COMPLEX)

– the 2nd and 3rd letters YY indicate the type of the matrix A (and in some cases its storage
scheme):

BD – bidiagonal
GB – general band
GE – general
HS – upper Hessenberg
OP – (real) orthogonal (packed storage)
UP – (complex) unitary (packed storage)
OR – (real) orthogonal
UN – (complex) unitary
PT – symmetric or Hermitian positive-definite tridiagonal
SB – (real) symmetric band
HB – (complex) Hermitian band
SP – symmetric (packed storage)
HP – Hermitian (packed storage)
ST – (real) symmetric tridiagonal
SY – symmetric
HE – Hermitian
TR – triangular (or quasi-triangular)

– the last 3 letters ZZZ indicate the computation performed. For example, QRF is a QR
factorization.

Thus the routine SGEQRF performs a QR factorization of a real general matrix in a single precision
implementation of the Library; the corresponding routine in a double precision implementation is
DGEQRF.

Some sections of the routine documents – Section 2 (Specification) and Section 9.1 (Example program)
– print the LAPACK name in bolditalics, according to the NAG convention of using bold italics for
precision-dependent terms – for example, sgeqrf, which should be interpreted as either SGEQRF (in
single precision) or DGEQRF (in double precision).

3.3 Matrix Storage Schemes

In this chapter the following storage schemes are used for matrices:

– conventional storage in a two-dimensional array;

– packed storage for symmetric or Hermitian matrices;

– packed storage for orthogonal or unitary matrices;

– band storage for general, symmetric or Hermitian band matrices;

– storage of bidiagonal, symmetric or Hermitian tridiagonal matrices in two one-dimensional arrays.

These storage schemes are compatible with those used in Chapter F06 and Chapter F07, but different
schemes for packed, band and tridiagonal storage are used in a few older routines in Chapter F01, Chapter
F02, Chapter F03 and Chapter F04.

In the examples below, ∗ indicates an array element which need not be set and is not referenced by
the routines. The examples illustrate only the relevant leading rows and columns of the arrays; array
arguments may of course have additional rows or columns, according to the usual rules for passing array
arguments in Fortran 77.

F08.20 [NP3390/19/pdf]

F08 – Least-squares and Eigenvalue Problems (LAPACK) Introduction – F08

3.3.1 Conventional storage

The default scheme for storing matrices is the obvious one: a matrix A is stored in a two-dimensional
array A, with matrix element aij stored in array element A(i, j).

If a matrix is triangular (upper or lower, as specified by the argument UPLO when present), only the
elements of the relevant triangle are stored; the remaining elements of the array need not be set. Such
elements are indicated by ∗ in the examples below. For example, when n = 4:

UPLO Triangular matrix A Storage in array A

’U’




a11 a12 a13 a14

a22 a23 a24

a33 a34

a44




a11 a12 a13 a14

∗ a22 a23 a24

∗ ∗ a33 a34

∗ ∗ ∗ a44

’L’




a11

a21 a22

a31 a32 a33

a41 a42 a43 a44




a11 ∗ ∗ ∗
a21 a22 ∗ ∗
a31 a32 a33 ∗

a41 a42 a43 a44

Similarly, if the matrix is upper Hessenberg, or if the matrix is quasi-upper triangular, elements below
the first subdiagonal need not be set.

Routines that handle symmetric or Hermitian matrices allow for either the upper or lower triangle of the
matrix (as specified by UPLO) to be stored in the corresponding elements of the array; the remaining
elements of the array need not be set. For example, when n = 4:

UPLO Hermitian matrix A Storage in array A

’U’




a11 a12 a13 a14

ā12 a22 a23 a24

ā13 ā23 a33 a34

ā14 ā24 ā34 a44




a11 a12 a13 a14

∗ a22 a23 a24

∗ ∗ a33 a34

∗ ∗ ∗ a44

’L’




a11 ā21 ā31 ā41

a21 a22 ā32 ā42

a31 a32 a33 ā43

a41 a42 a43 a44




a11 ∗ ∗ ∗
a21 a22 ∗ ∗
a31 a32 a33 ∗

a41 a42 a43 a44

3.3.2 Packed storage

Symmetric and Hermitian matrices may be stored more compactly, if the relevant triangle (again as
specified by UPLO) is packed by columns in a one-dimensional array. In Chapter F07 and Chapter F08,
arrays that hold matrices in packed storage, have argument names ending in ’P’. So:

if UPLO = ’U’, aij is stored in AP(i+ j(j − 1)/2) for i ≤ j;

if UPLO = ’L’, aij is stored in AP(i+ (2n− j)(j − 1)/2) for j ≤ i.

For example:

[NP3390/19/pdf] F08.21

Introduction – F08 F08 – Least-squares and Eigenvalue Problems (LAPACK)

UPLO Triangle of matrix A Packed storage in array AP

’U’




a11 a12 a13 a14

a22 a23 a24

a33 a34

a44




a11 a12a22︸ ︷︷ ︸ a13a23a33︸ ︷︷ ︸ a14a24a34a44︸ ︷︷ ︸

’L’




a11

a21 a22

a31 a32 a33

a41 a42 a43 a44




a11a21a31a41︸ ︷︷ ︸ a22a32a42︸ ︷︷ ︸ a33a43︸ ︷︷ ︸ a44

Note that for symmetric matrices, packing the upper triangle by columns is equivalent to packing the
lower triangle by rows; packing the lower triangle by columns is equivalent to packing the upper triangle
by rows. For Hermitian matrices, packing the upper triangle by columns is equivalent to packing the
conjugate of the lower triangle by rows; packing the lower triangle by columns is equivalent to packing
the conjugate of the upper triangle by rows.

3.3.3 Band storage

A general m by n band matrix with kl subdiagonals and ku superdiagonals may be stored compactly
in a two-dimensional array with kl + ku + 1 rows and n columns. Columns of the matrix are stored in
corresponding columns of the array, and diagonals of the matrix are stored in rows of the array. This
storage scheme should be used in practice only if kl, ku
 n, although routines in Chapter F07 and
Chapter F08 work correctly for all values of kl and ku. In Chapter F07 and Chapter F08, arrays that
hold matrices in band storage have argument names ending in ’B’. So:

aij is stored in AB(ku + 1 + i− j, j) for max(1, j − ku) ≤ i ≤ min(m, j + kl).

For example, when m = 6, n = 5, kl = 2 and ku = 1:

general band matrix A Band storage in array AB


a11 a12

a21 a22 a23

a31 a32 a33 a34

a42 a43 a44 a45

a53 a54 a55

a64 a65




∗ a12 a23 a34 a45

a11 a22 a33 a44 a55

a21 a32 a43 a54 a65

a31 a42 a53 a64 ∗

A symmetric or Hermitian band matrix with k subdiagonals and superdiagonals may be stored more
compactly in a two-dimensional array with k + 1 rows and n columns. Only the upper or lower triangle
(as specified by UPLO) need to be stored. So:

if UPLO = ’U’, aij is stored in AB(k + 1 + i− j, j) for max(1, j − k) ≤ i ≤ j;

if UPLO = ’L’, aij is stored in AB(1 + i− j, j) for j ≤ i ≤ min(n, j + k).

For example, when n = 5 and k = 2:

F08.22 [NP3390/19/pdf]

F08 – Least-squares and Eigenvalue Problems (LAPACK) Introduction – F08

UPLO Hermitian band matrix A Band storage in array AB

’U’




a11 a12 a13

ā12 a22 a23 a24

ā13 ā23 a33 a34 a35

ā24 ā34 a44 a45

ā35 ā45 a55




∗ ∗ a13 a24 a35

∗ a12 a23 a34 a45

a11 a22 a33 a44 a55

’L’




a11 ā21 ā31

a21 a22 ā32 ā42

a31 a32 a33 ā43 ā53

a42 a43 a44 ā54

a53 a54 a55




a11 a22 a33 a44 a55

a21 a32 a43 a54 ∗
a31 a42 a53 ∗ ∗

3.3.4 Tridiagonal and bidiagonal matrices

A symmetric tridiagonal or bidiagonal matrix is stored in two one-dimensional arrays, one of length n
containing the diagonal elements, and one of length n − 1 containing the off-diagonal elements. (Older
routines in Chapter F02 store the off-diagonal elements in elements 2 : n of a vector of length n.)

3.3.5 Real diagonal elements of complex matrices

Complex Hermitian matrices have diagonal matrices that are by definition purely real. In addition, some
complex triangular matrices computed by F08 routines are defined by the algorithm to have real diagonal
elements – in QR factorization, for example.

If such matrices are supplied as input to F08 routines, the imaginary parts of the diagonal elements are
not referenced, but are assumed to be zero. If such matrices are returned as output by F08 routines, the
computed imaginary parts are explicitly set to zero.

3.3.6 Representation of orthogonal or unitary matrices

A real orthogonal or complex unitary matrix (usually denoted Q) is often represented in the NAG Library
as a product of elementary reflectors – also referred to as elementary Householder matrices (usually
denoted Hi). For example,

Q = H1H2 . . . Hk.

Most users need not be aware of the details, because routines are provided to work with this representation,
either to generate all or part of Q explicitly, or to multiply a given matrix by Q or QT (QH in the complex
case) without forming Q explicitly.

Nevertheless, the following further details may occasionally be useful.

An elementary reflector (or elementary Householder matrix) H of order n is a unitary matrix of the form

H = I − τvvH (4)

where τ is a scalar, and v is an n element vector, with |τ |2‖v‖2
2 = 2 × Re(τ); v is often referred to as

the Householder vector. Often v has several leading or trailing zero elements, but for the purpose of this
discussion assume that H has no such special structure.

There is some redundancy in the representation (4), which can be removed in various ways. The
representation used in Chapter F08 and in LAPACK (which differs from those used in some of the
routines in Chapter F01, Chapter F02, Chapter F04 and Chapter F06) sets v1 = 1; hence v1 need not be
stored. In real arithmetic, 1 ≤ τ ≤ 2, except that τ = 0 implies H = I.

In complex arithmetic, τ may be complex, and satisfies 1 ≤ Re(τ) ≤ 2 and |τ−1| ≤ 1. Thus a complex H
is not Hermitian (as it is in other representations), but it is unitary, which is the important property. The

[NP3390/19/pdf] F08.23

Introduction – F08 F08 – Least-squares and Eigenvalue Problems (LAPACK)

advantage of allowing τ to be complex is that, given an arbitrary complex vector x,H can be computed
so that

HHx = β(1, 0, . . . , 0)T

with real β. This is useful, for example, when reducing a complex Hermitian matrix to real symmetric
tridiagonal form, or a complex rectangular matrix to real bidiagonal form.

3.4 Parameter Conventions

3.4.1 Option parameters

Most routines in this chapter have one or more option parameters, of type CHARACTER. The
descriptions in Section 5 of the routine documents refer only to upper case values (for example ’U’
or ’L’); however in every case, the corresponding lower case characters may be supplied (with the same
meaning). Any other value is illegal.

A longer character string can be passed as the actual parameter, making the calling program more
readable, but only the first character is significant. (This is a feature of Fortran 77.) For example:

CALL SSYTRD (’Upper’, . . .)

3.4.2 Problem dimensions

It is permissible for the problem dimensions (for example, M or N) to be passed as zero, in which case
the computation (or part of it) is skipped. Negative dimensions are regarded as an error.

3.4.3 Length of work arrays

A number of routines implementing block algorithms require workspace sufficient to hold one block of
rows or columns of the matrix if they are to achieve optimum levels of performance – for example,
workspace of size n× nb, where nb is the optimum block size. In such cases, the actual declared length
of the work array must be passed as a separate argument LWORK, which immediately follows WORK
in the argument-list.

The routine will still perform correctly when less workspace is provided: it simply uses the largest block
size allowed by the amount of workspace supplied, as long as this is likely to give better performance
than the unblocked algorithm. On exit, WORK(1) contains the minimum value of LWORK which would
allow the routine to use the optimum block size; this value of LWORK can be used for subsequent runs.

If LWORK indicates that there is insufficient workspace to perform the unblocked algorithm, this is
regarded as an illegal value of LWORK, and is treated like any other illegal parameter value (see Section
3.4.4).

If you are in doubt how much workspace to supply and are concerned to achieve optimum performance,
supply a generous amount (assume a block size of 64, say), and then examine the value of WORK(1) on
exit.

3.4.4 Error-handling and the diagnostic parameter INFO

Routines in this chapter do not use the usual NAG Library error-handling mechanism, involving
the parameter IFAIL. Instead they have a diagnostic parameter INFO. (Thus they preserve complete
compatibility with the LAPACK specification.)

Whereas IFAIL is an Input/Output parameter and must be set before calling a routine, INFO is purely
an Output parameter and need not be set before entry.

INFO indicates the success or failure of the computation, as follows:

INFO = 0: successful termination

INFO < 0: failure in the course of computation, control returned to the calling program

F08.24 [NP3390/19/pdf]

F08 – Least-squares and Eigenvalue Problems (LAPACK) Introduction – F08

If the routine document specifies that the routine may terminate with INFO < 0, then it is essential
to test INFO on exit from the routine. (This corresponds to a soft failure in terms of the usual NAG
error-handling terminology.) No error message is output.

All routines check that input parameters such as N or LDA or option parameters of type CHARACTER
have permitted values. If an illegal value of the ith parameter is detected, INFO is set to −i, a message
is output, and execution of the program is terminated. (This corresponds to a hard failure in the usual
NAG terminology.)

[NP3390/19/pdf] F08.25

Introduction – F08 F08 – Least-squares and Eigenvalue Problems (LAPACK)

4 Decision Trees
4.1 General purpose routines (eigenvalues and eigenvectors)

Tree 1: Real Symmetric Matrices

no

yesAre eigenvalues
only required?

yes

no

Is A tridiagonal?

no

no

no

yes

yes

yes

yes

yes

F08JJF

F08HEF
F08JJF

F08GEF
F08JJF

F08FEF F08JJF

Is A a band
matrix?

Is A tridiagonal?

Is one triangle
of A stored as a
linear array?

Is A a band
matrix?

Is one triangle
of A stored as a
linear array?

F08JFF or
F08JCF

(F08HEF
F08JFF) or
F08HEF

(F08GEF
F08JFF) or
F08GCF

no

no

Are all
eigenvalues and
eigenvectors
required?

Is A tridiagonal?

Is A a band
matrix?

Is one triangle
of A stored as a
linear array?

no

no

(F08FEF F08FFF
F08JEF) or
F08FCF

F08JEF or
F08JCF

(F08HEF
F08JEF) or
F08HCF

yes

yes

yes

no

(F08GEF
F08GFF
F08JEF) or
F08GCF

yes

Is A tridiagonal?

Is one triangle
of A stored as a
linear array?

F08JJF F08JKF

F08GEF F08JJF
F08JKF F08GGF

F08FEF F08JJF
F08JKF F08FGF

yes

yes

no

no

no

no

Are all the
eigenvalues
required?

(F08FEF
F08JFF) or
F08FCF

yes

F08.26 [NP3390/19/pdf]

F08 – Least-squares and Eigenvalue Problems (LAPACK) Introduction – F08

Tree 2: Real Generalized Symmetric-definite Eigenvalue Problems

no

Are A and B band
matrices?

Are all eigenvalues
and eigenvectors
required?

Are eigenvalues
only required?

no

no

no

Note: the routines for band matrices only handle the problem Ax = λBx; the other routines handle all three types of problems

(Ax = λBx, ABx = λx or BAx = λx) except that, if the problem is BAx = λx and eigenvectors are required, F06PHF must be used

instead of F06PLF, and F06YFF instead of F06YJF.

Are A and B stored
with one triangle as
a linear array?

F07FDF F08SEF
F08FEF F08JJF
F08JKF F08FGF
F06YJF

yes

yes

Are A and B band
matrices?

F07FDF F08SEF
F08FEF F08JFF

F01BUF F01BVF
F08HEF F08JJF

yes
F07GDF F08TEF
F08GEF F08JJF

no

no

yes F07GDF F08TEF
F08GEF F08GFF
F06JEF F06PLF

Are A and B stored
with one triangle as
a linear array?

yes

no

no

yes

no

F07FDF F08SEF F08FEF
F08FFF F08JEF F06YJF

F07FDF F08SEF
F08GEF F08JJF

F07GDF F08TEF
F08GEF F08JJF
F08JKF F08GGF
F06PLF

F01BUF F01BVF
F08HEF F08JJF
F02SDF

no

yes

yes

Are all the
eigenvalues required?

Are A and B band
matrices?

Are A and B stored
with one triangle as
a linear array?

Are A and B stored
with one triangle as
a linear array?

F07GDF F08TEF
F08GEF F08JFF

F01BUF F01BVF
F08HEF F08JFF

yes

yes

[NP3390/19/pdf] F08.27

Introduction – F08 F08 – Least-squares and Eigenvalue Problems (LAPACK)

Tree 3: Real Nonsymmetric Matrices

Are eigenvalues
only required?

Is A an upper
Hessenberg matrix?

Is the Schur
factorization of A
required?

Are all eigenvectors
required?

Is A an upper
Hessenberg matrix?

F08NHF F08NEF
F08PEF F08PKF
F08NGF F08NJF

F08PEF

F08PEF
Is A an upper
Hessenberg matrix?

Is A an upper
Hessenberg matrix?

F08NHF F08NEF
F08NFF F08PEF
F08QKF F08NJF

F08PEF F08PKF

F08PEF F08QKF

yes

no

yes

yes

yes

no

no

no

no

no

no

F08NHF
F08NEF F08NFF
F08PEF F08NJF

F08NHF F08NEF
F08PEF

yes

yes

yes

F08.28 [NP3390/19/pdf]

F08 – Least-squares and Eigenvalue Problems (LAPACK) Introduction – F08

Tree 4: Complex Hermitian Matrices

no

yesAre
eigenvalues
only required?

no

no

yes

yes

Is A a band
matrix?

Is one triangle
of A stored as a
linear array?

Is A a band
matrix?

Is one triangle
of A stored as a
linear array?

no

no

Are all
eigenvalues and
eigenvectors
required?

Is A a band
matrix?

Is one triangle
of A stored as a
linear array?

no

no

yes

yes

Is one triangle
of A stored as a
linear array?

no

no

no

(F08HSF
F08JFF) or
F08HQF

(F08GSF
F08JFF) or
F08GQF

(F08FSF
F08JFF) or
F08FQF

F08HSF
F08JJF

F08GSF
F08JJF

F08FSF F08JJF

(F08HSF
F08JSF) or
F08HQF

(F08GSF
F08GTF
F08JSF) or
F08GQF

(F08FSF F08FTF
F08JSF) or
F08FQF

F08GSF F08JJF
F08JXF F08GUF

F08FSF F08JJF
F08JXF F08FUF

Are all the
eigenvalues
required?

yes

yes

yes

yes

yes

[NP3390/19/pdf] F08.29

Introduction – F08 F08 – Least-squares and Eigenvalue Problems (LAPACK)

Tree 5: Complex Generalized Hermitian-definite Eigenvalue Problems

no

no

yes

no

Are all eigenvalues
and eigenvectors
required?

Are eigenvalues
only required?

F07GRF F08TSF
F08GSF F08GTF
F06JSF F06PSF

no

no

yes

no

no

Note: the same routines are required for all three types of problem (Ax = λBx, ABx = λx or BAx = λx) except that, if the problem is

BAx = λx and eigenvectors are required, F06SHF must be used instead of F06SLF, and F06ZFF instead of F06ZJF.

F07GRF F08TSF
F08GSF F08JFF

F07FRF F08SSF
F08FSF F08JFF

F07GRF F08TSF
F08GSF F08JJF

F07FRF F08SSF
F08GSF F08JJF

F07FRF F08SSF
F08FSF F08FTF
F08JSF F06ZJF

F07GRF F08TSF
F08GSF F08JJF F08JXF
F08GUF F06SLF

F07FRF F08SSF
F08FSF F08JJF
F08JXF F08FUF
F06ZJF

Are all eigenvalues
required?

Are A and B stored
with one triangle as
a linear array?

Are A and B stored
with one triangle as
a linear array?

Are A and B stored
with one triangle as
a linear array?

Are A and B stored
with one triangle as
a linear array?

yes yes

yes

yes

yes

F08.30 [NP3390/19/pdf]

F08 – Least-squares and Eigenvalue Problems (LAPACK) Introduction – F08

Tree 6: Complex Nonhermitian Matrices

yes

yes

yes

yes

yes

yes

F08NVF F08NSF
F08PSF F08PXF
F08NUF F08NWF

F08PSF F08PXF

F08NVF F08NSF F08NTF
F08PSF F08QXF F08NWF

F08PSF F08QXF

F08NVF F08NSF F08NTF
F08PSF F08NWF

F08PSF

F08NVF F08NSF F08PSF

F08PSF

no

no

no

no

no

no

yes

no

Is A an upper Hessenberg
matrix?

Is A an upper Hessenberg
matrix?

Is A an upper
Hessenberg matrix?

Are all eigenvectors
required?

Is the Schur
factorization of A
required?

Is A an upper Hessenberg
matrix?

Are eigenvalues only
required?

[NP3390/19/pdf] F08.31

Introduction – F08 F08 – Least-squares and Eigenvalue Problems (LAPACK)

4.2 General purpose routines (singular value decomposition)

no

yes

no

no

Is A a complex
matrix?

Is A bidiagonal?

no

Are singular
values only
required?

Are singular
values only
required?

F08KSF F08MSF

F08KSF F08KTF
F08MSF

F08KEF
F08MEF

F08KEF F08KFF
F08MEF

F08MEF
yes

yes

yes

no

Is A banded?
F08LEF
F08MEF

yes

Is A banded?
no

yes

F08LSF
F08MSF

F08.32 [NP3390/19/pdf]

F08 – Least-squares and Eigenvalue Problems (LAPACK) Introduction – F08

5 Indexes of LAPACK Routines

Real Matrices Complex Matrices
LAPACK LAPACK LAPACK LAPACK

single precision double precision NAG single precision double precision NAG
SBDSQR DBDSQR F08MEF CBDSQR ZBDSQR F08MSF

SGBBRD DGBBRD F08LEF CGBBRD ZGBBRD F08LSF

SGEBAK DGEBAK F08NJF CGEBAK ZGEBAK F08NWF

SGEBAL DGEBAL F08NHF CGEBAL ZGEBAL F08NVF

SGEBRD DGEBRD F08KEF CGEBRD ZGEBRD F08KSF

SGEHRD DGEHRD F08NEF CGEHRD ZGEHRD F08NSF

SGELQF DGELQF F08AHF CGELQF ZGELQF F08AVF

SGEQPF DGEQPF F08BEF CGEQPF ZGEQPF F08BSF

SGEQRF DGEQRF F08AEF CGEQRF ZGEQRF F08ASF

SHSEIN DHSEIN F08PKF CHBEVD ZHBEVD F08HQF

SHSEQR DHSEQR F08PEF CHBGST ZHBGST F08USF

SOPGTR DOPGTR F08GFF CHBTRD ZHBTRD F08HSF

SOPMTR DOPMTR F08GGF CHEEVD ZHEEVD F08FQF

SORGBR DORGBR F08KFF CHEGST ZHEGST F08SSF

SORGHR DORGHR F08NFF CHETRD ZHETRD F08FSF

SORGLQ DORGLQ F08AJF CHPEVD ZHPEVD F08GQF

SORGQR DORGQR F08AFF CHPGST ZHPGST F08TSF

SORGTR DORGTR F08FFF CHPTRD ZHPTRD F08GSF

SORMBR DORMBR F08KGF CHSEIN ZHSEIN F08PXF

SORMHR DORMHR F08NGF CHSEQR ZHSEQR F08PSF

SORMLQ DORMLQ F08AKF CPBSTF ZPBSTF F08UTF

SORMQR DORMQR F08AGF CPTEQR ZPTEQR F08JUF

SORMTR DORMTR F08FGF CSTEIN ZSTEIN F08JXF

SPBSTF DPBSTF F08UFF CSTEQR ZSTEQR F08JSF

SPTEQR DPTEQR F08JGF CTREVC ZTREVC F08QXF

SSBEVD DSBEVD F08HCF CTREXC ZTREXC F08QTF

SSBGST DSBGST F08UEF CTRSEN ZTRSEN F08QUF

SSBTRD DSBTRD F08HEF CTRSNA ZTRSNA F08QYF

SSPEVD DSPEVD F08GCF CTRSYL ZTRSYL F08QVF

SSPGST DSPGST F08TEF CUNGBR ZUNGBR F08KTF

SSPTRD DSPTRD F08GEF CUNGHR ZUNGHR F08NTF

SSTEBZ DSTEBZ F08JJF CUNGLQ ZUNGLQ F08AWF

SSTEIN DSTEIN F08JKF CUNGQR ZUNGQR F08ATF

SSTEQR DSTEQR F08JEF CUNGTR ZUNGTR F08FTF

SSTERF DSTERF F08JFF CUNMBR ZUNMBR F08KUF

SSTEVD DSTEVD F08JCF CUNMHR ZUNMHR F08NUF

SSYEVD DSYEVD F08FCF CUNMLQ ZUNMLQ F08AXF

SSYGST DSYGST F08SEF CUNMQR ZUNMQR F08AUF

SSYTRD DSYTRD F08FEF CUNMTR ZUNMTR F08FUF

STREVC DTREVC F08QKF CUPGTR ZUPGTR F08GTF

STREXC DTREXC F08QFF CUPMTR ZUPMTR F08GUF

STRSEN DTRSEN F08QGF

STRSNA DTRSNA F08QLF

STRSYL DTRSYL F08QHF

Table 4

6 Routines Withdrawn or Scheduled for Withdrawal

None since Mark 13.

7 References

[1] Anderson E, Bai Z, Bischof C, Demmel J, Dongarra J J, Du Croz J J, Greenbaum A, Hammarling
S, McKenney A, Ostrouchov S and Sorensen D (1995) LAPACK Users’ Guide (2nd Edition) SIAM,
Philadelphia

[2] Arioli M, Duff I S and De Rijk P P M (1989) On the augmented system approach to sparse least-
squares problems Numer. Math. 55 667–684

[3] Demmel J W and Kahan W (1990) Accurate singular values of bidiagonal matrices SIAM J. Sci.
Statist. Comput. 11 873–912

[NP3390/19/pdf] F08.33

Introduction – F08 F08 – Least-squares and Eigenvalue Problems (LAPACK)

[4] Golub G H and Van Loan C F (1996) Matrix Computations Johns Hopkins University Press (3rd
Edition), Baltimore

[5] Parlett B N (1980) The Symmetric Eigenvalue Problem Prentice–Hall

[6] Wilkinson J H (1965) The Algebraic Eigenvalue Problem Oxford University Press, London

[7] Wilkinson J H and Reinsch C (1971) Handbook for Automatic Computation II, Linear Algebra
Springer–Verlag

F08.34 (last) [NP3390/19/pdf]

